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COBALT DEPOSITION ON BARRIER
SURFACES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. Ser. No. 12/201,
976, filed on Aug. 29, 2008 which is a continuation-in-part of
U.S. Ser. No. 12/111,923, filed Apr. 29, 2008 and is a con-
tinuation-in-part of U.S. Ser. No. 12/111,930, filed Apr. 29,
2008, which are both continuation-in-parts of U.S. Ser. No.
11/733,929, filed Apr. 11, 2007, which are all herein incor-
porated by reference in their entirety. U.S. Ser. No. 11/733,
929 claims benefit of U.S. Ser. No. 60/791,366, filed Apr. 11,
2006, and U.S. Ser. No. 60/863,939, filed Nov. 1, 2006, and is
also a continuation-in-part of U.S. Ser. No. 11/456,073, filed
Jul. 6, 2006, and issued as U.S. Pat. No. 7,416,979, which is
a continuation of U.S. Ser. No. 10/845,970, filed May 14,
2004, and now abandoned, which is a continuation of U.S.
Ser.No. 10/044,412, filed Jan. 9, 2002, and issued as U.S. Pat.
No. 6,740,585, which is a continuation-in part of U.S. Ser.
No. 09/916,234, filed Jul. 25, 2001, and now abandoned,
which are all herein incorporated by reference in their
entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

Embodiments of the invention generally relate to a metal-
lization process for manufacturing electronic and semicon-
ductor devices, more particularly, embodiments relate to a
method for depositing a cobalt layer on a barrier layer before
depositing a conductive layer or contact material thereon.

2. Description of the Related Art

Copper is the current metal of choice for use in multilevel
metallization processes that are crucial to device manufactur-
ing. The multilevel interconnects that drive the manufactur-
ing processes require planarization of high aspect ratio aper-
tures including contacts, vias, lines, and other features.
Filling the features without creating voids or deforming the
feature geometry is more difficult when the features have
higher aspect ratios. Reliable formation of interconnects is
also more difficult as manufacturers strive to increase circuit
density and quality.

As the use of copper has permeated the marketplace
because of its relative low cost and processing properties,
semiconductor manufacturers continue to look for ways to
improve the boundary regions between copper and dielectric
material by reducing copper diffusion and dewetting. Several
processing methods have been developed to manufacture
copper interconnects as feature sizes have decreased. Each
processing method may increase the likelihood of errors such
as copper diffusion across boundary regions, copper crystal-
line structure deformation, and dewetting. Physical vapor
deposition (PVD), chemical vapor deposition (CVD), atomic
layer deposition (ALD), electrochemical plating (ECP), elec-
troless deposition, chemical mechanical polishing (CMP),
electrochemical mechanical polishing (ECMP), and other
methods of depositing and removing copper layers utilize
mechanical, electrical, or chemical methods to manipulate
the copper that forms the interconnects. Barrier and capping
layers may be deposited to contain the copper.

In the past, a layer of tantalum, tantalum nitride, or copper
alloy with tin, aluminum, or magnesium was used to provide
a barrier layer or an adhesion promoter between copper and
other materials. These options are usually costly and are only
partially effective. As the copper atoms along the boundary
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regions experience changes in temperature, pressure, atmo-
spheric conditions, or other process variables common during
multiple step semiconductor processing, the copper may
migrate along the boundary regions and become agglomer-
ated copper. The copper may also be less uniformly dispersed
along the boundary regions and become dewetted copper.
These changes in the boundary region include stress migra-
tion and electromigration of the copper atoms. The stress
migration and electromigration of copper across the dielectric
layers or other structures increases the resistivity of the result-
ing structures and reduces the reliability of the resulting
devices.

Therefore, a need exists to enhance the stability and adhe-
sion of a conductive layer or a contact material on a barrier
layer. Also, a need exists to improve the electromigration
reliability of a copper-containing layer, especially for copper
line formations, while preventing the diffusion of copper into
neighboring materials, such as dielectric materials.

SUMMARY OF THE INVENTION

Embodiments of the invention provide processes for
depositing a cobalt layer on a barrier layer prior to depositing
a conductive layer thereon. In one embodiment, a method for
depositing materials on a substrate surface is provided which
includes forming a barrier layer on a substrate, exposing the
substrate to dicobalt hexacarbonyl butylacetylene (CCTBA)
and hydrogen (H,) to form a cobalt layer on the barrier layer
during a vapor deposition process, and depositing a conduc-
tive material over the cobalt layer.

In one example, the substrate may be exposed to a deposi-
tion gas containing CCTBA and hydrogen during a thermal
CVD process. In another example, the substrate may be
sequentially exposed to CCTBA and hydrogen during an
ALD process. The substrate may be heated to a temperature
within a range from about 100° C. to about 250° C. during the
CVD or ALD process. The cobalt layer may be deposited with
a thickness of less than about 40 A.

In some examples, the barrier layer and/or the cobalt layer
may be exposed to a gas or a reagent during a treatment
process. The treatment may be a thermal process, an in situ
plasma process, or a remote plasma process. The gas or the
reagent may contain or be nitrogen (N,), ammonia (NH;),
hydrogen (H,), an ammonia/hydrogen mixture, silane, disi-
lane, helium, argon, plasmas thereof, derivatives thereof, or
combinations thereof. The barrier layer or the cobalt layer
may be exposed to the gas, reagent, or plasma for a time
period within a range from about 1 second to about 30 sec-
onds. The substrate may be heated to a temperature within a
range from about 50° C. to about 400° C. during the treatment
process.

In some examples, the conductive material may contain
copper or a copper alloy. The conductive material may con-
tain a seed layer and a bulk layer. Alternatively, the conductive
material may be directly deposited on the cobalt layer, such as
by an electrochemical plating (ECP) process. In one example,
a seed layer containing copper may be deposited by a PVD
process or a CVD process. In another example, the bulk layer
contains copper and may be deposited by an ECP process.
The barrier layer may contain tantalum, tantalum nitride,
titanium, titanium nitride, tungsten, tungsten nitride, alloys
thereof, derivatives thereof, or combinations thereof. In one
example, the barrier layer may be a tantalum nitride layer
disposed on a tantalum layer.

In another embodiment, a method for depositing materials
on a substrate surface is provided which includes forming a
barrier layer on a substrate, exposing the barrier layer to a first
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plasma during a pre-treatment process, exposing the substrate
to CCTBA and hydrogen to form a cobalt layer on the barrier
layer during a vapor deposition process, exposing the cobalt
layer to a second plasma during a post-treatment process, and
depositing a copper layer on the cobalt layer by a vapor
deposition process, such as a PVD process ora CVD process.

In another embodiment, a method for depositing materials
on a substrate surface is provided which includes forming a
barrier layer on a substrate, exposing the barrier layer to a
plasma during a pre-treatment process, exposing the substrate
to CCTBA and a reducing gas to form a cobalt layer on the
barrier layer during a vapor deposition process, exposing the
cobalt layer to a hydrogen plasma during a post-treatment
process, and depositing a copper material over the cobalt
layer. In one example, the vapor deposition process to deposit
the cobalt layer and the post-treatment process are sequen-
tially repeated to form a cobalt material. The cobalt material
contains multiple cobalt layers which have each been exposed
to a hydrogen plasma prior to having another cobalt layer
deposited thereon.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of
the invention can be understood in detail, a more particular
description of the invention, briefly summarized above, may
be had by reference to embodiments, some of which are
illustrated in the appended drawings. It is to be noted, how-
ever, that the appended drawings illustrate only typical
embodiments of this invention and are therefore not to be
considered limiting of its scope, for the invention may admit
to other equally effective embodiments.

FIG. 1 depicts a flow chart illustrating a process according
to an embodiment described herein; and

FIGS. 2A-2F depict schematic views of a substrate at dif-
ferent process steps according to an embodiment described
herein.

DETAILED DESCRIPTION

Embodiments of the invention provide a method for depos-
iting a cobalt layer on a barrier layer or layer prior to depos-
iting a conductive layer thereon. The cobalt layer and barrier
layer may each optionally be exposed to a treatment process,
such as a plasma process or athermal process. The conductive
layer may contain copper or a copper alloy and be deposited
by a physical vapor deposition (PVD) process, an atomic
layer deposition (ALD) process, an electrochemical plating
(ECP) process, or an electroless deposition process. The
cobalt layer improves copper boundary region properties to
promote adhesion, improve gapfill and electromigration per-
formance, decrease diffusion and agglomeration, and encour-
age uniform roughness and wetting of the substrate surface
during processing.

FIG. 1 depicts a flow chart illustrating process 100 accord-
ing to an embodiment of the invention. Process 100 may be
used to form an interconnect or other device on a substrate. In
one embodiment, steps 110-150 of process 100 may be per-
formed on substrate 200, depicted in FIGS. 2A-2F. Process
100 includes depositing or forming a barrier layer on a sub-
strate (step 110), optionally exposing the barrier layer to a
pre-treatment process (step 120), depositing a cobalt layer on
the barrier layer (step 130), optionally exposing the cobalt
layer to a post-treatment process (step 140), and depositing at
least one conductive layer on the cobalt layer (step 150).

FIG. 2A depicts substrate 200 containing dielectric layer
204 disposed over underlayer 202. Aperture 206 is formed
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within dielectric layer 204 and may be a via, damascene,
trough, or other passageway formed therein. Underlayer 202
may be a substrate, substrate surface, contact layer, or another
layer depending on device structure. Dielectric layer 204 may
contain a dielectric material, such as a low-k dielectric mate-
rial. In one example, dielectric layer 204 contains a low-k
dielectric material, such as a silicon carbide oxide material, or
a carbon doped silicon oxide material, for example, BLACK
DIAMOND® 1 low-k dielectric material, available from
Applied Materials, Inc., located in Santa Clara, Calif. Another
example of a suitable material for dielectric layer 204 is a
silicon carbide based film formed using chemical vapor depo-
sition (CVD) or plasma enhanced CVD (PE-CVD) processes
such as described in commonly assigned U.S. Pat. Nos. 6,537,
733, 6,790,788, and 6,890,850, which are incorporated herein
by reference.

In one embodiment, at least one barrier layer or material
may be deposited or formed on a substrate during step 110 of
process 100. In one example, FIG. 2B depicts barrier layer
210 disposed on substrate 200, over dielectric layer 204, and
conformally within aperture 206. Barrier layer 210 may be
one layer or multiple layers. Barrier layer 210 may contain
titanium, titanium nitride, tantalum, tantalum nitride, tung-
sten, tungsten nitride, silicides thereof, derivatives thereof, or
combinations thereof. In some embodiments, barrier layer
210 may contain a bilayer of tantalum/tantalum nitride, tita-
nium/titanium nitride, or tungsten/tungsten nitride. Barrier
layer 210 may have a thickness within a range from about 5 A
to about 50 A, preferably, from about 10 A to about 30 A, and
may be formed or deposited by PVD, ALD, plasma enhanced
ALD (PE-ALD), CVD, PE-CVD, pulsed-CVD, or combina-
tions thereof.

In one example, barrier layer 210 contains a lower layer of
metallic tantalum deposited by a PVD process and an upper
layer disposed over the lower layer of tantalum nitride layer
deposited by another PVD process. In another example, bar-
rier layer 210 contains a lower layer of metallic tantalum
deposited by an ALD process and an upper layer disposed
over the lower layer of tantalum nitride layer deposited by a
CVD process. In another example, barrier layer 210 contains
a lower layer of metallic tantalum deposited by a PVD pro-
cess and an upper layer disposed over the lower layer of
tantalum nitride layer deposited by a CVD process.

For example, barrier layer 210 may contain tantalum
nitride deposited using a CVD process or an ALD process
wherein tantalum-containing compound or tantalum precur-
sor (e.g., PDMAT) and nitrogen precursor (e.g., ammonia)
are reacted. In one embodiment, tantalum and/or tantalum
nitride is deposited as barrier layer 210 by an ALD process as
described in commonly assigned U.S. Ser. No. 10/281,079,
filed Oct. 25, 2002, and published as US 2003-0121608,
which is herein incorporated by reference. In one example, a
Ta/TaN bilayer may be deposited as barrier layer 210, such as
a metallic tantalum layer and a tantalum nitride layer that are
independently deposited by ALD, CVD, and/or PVD pro-
cesses, one layer on top of the other layer, in either order.

In another example, a Ti/TiN bilayer may be deposited as
barrier layer 210, such as a metallic titanium layer and a
titanium nitride layer that are independently deposited by
ALD, CVD, and/or PVD processes, one layer on top of the
other layer, in either order. In another example, a W/WN
bilayer may be deposited as barrier layer 210, such as a
metallic tungsten layer and a tungsten nitride layer that are
independently deposited by ALD, CVD, and/or PVD pro-
cesses, one layer on top of the other layer, in either order.

At step 120, barrier layer 210 may be optionally exposed to
a pre-treatment process, such as a plasma process or a thermal
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process. Process gases and/or reagents that may be exposed to
substrate 200 during plasma or thermal pre-treatment pro-
cesses include hydrogen (e.g., H, or atomic-H), nitrogen
(e.g., N, or atomic-N), ammonia (NH;), a hydrogen and
ammonia mixture (H,/NH;), hydrazine (N,H,), silane
(SiH,), disilane (Si,Hg), helium, argon, derivatives thereof,
plasmas thereof, or combinations thereof. The process gas
may flow into the processing chamber or be exposed to the
substrate having a flow rate within a range from about 500
sccm to about 10 slm, preferably, from about 1 slm to about 6
slm, for example, about 3 slm.

In one embodiment, substrate 200 and barrier layer 210
may be exposed to a plasma to remove contaminants from
barrier layer 210 during the pre-treatment process at step 120.
Substrate 200 may be positioned within a processing chamber
and exposed to a process gas which is ignited to form the
plasma. The process gas may contain one gaseous compound
or multiple gaseous compounds. Substrate 200 may be at
room temperature (e.g., 23° C.), but is usually preheated to
the desired temperature of the subsequent deposition process.
Substrate 200 may be heated to a temperature within a range
from about 100° C. to about 400° C., preferably, from about
125° C. to about 350° C., and more preferably, from about
150° C. to about 300° C., such as about 200° C. or about 250°
C.

The processing chamber may produce an in situ plasma or
be equipped with a remote plasma source (RPS). In one
embodiment, substrate 200 may be exposed to the plasma
(e.g., in situ or remotely) for a time period within a range from
about 0.5 seconds to about 90 seconds, preferably, from about
10 seconds to about 60 seconds, and more preferably, from
about 20 seconds to about 40 seconds. The plasma may be
produced at a power within a range from about 100 watts to
about 1,000 watts, preferably, from about 200 watts to about
600 watts, and more preferably, from about 300 watts to about
500 watts. The processing chamber usually has an internal
pressure of about 100 Torr or less, such as within a range from
about 0.1 Torr to about 100 Torr, preferably, from about 0.5
Torr to about 50 Torr, and more preferably, from about 1 Torr
to about 10 Torr.

In one example, substrate 200 and barrier layer 210 may be
exposed to a plasma generated from hydrogen, ammonia,
nitrogen, or mixtures thereof. In another example, substrate
200 and barrier layer 210 may be exposed to a plasma gen-
erated from hydrogen and ammonia. In another example,
substrate 200 and barrier layer 210 may be exposed to a
plasma generated from hydrogen, nitrogen, silane, disilane,
or mixtures thereof. In another example, substrate 200 and
barrier layer 210 may be exposed to a plasma generated from
hydrogen, nitrogen, argon, helium, or mixtures thereof.

In another embodiment, substrate 200 and barrier layer 210
are exposed to a process gas to remove contaminants from
barrier layer 210 during a thermal pre-treatment process at
step 120. The thermal pre-treatment process may be a rapid
thermal process (RTP) or a rapid thermal annealing (RTA)
process. Substrate 200 may be positioned within a processing
chamber and exposed to at least one process gas and/or
reagent. The processing chamber may be a deposition cham-
ber that will be used for a subsequent deposition process, such
as a PVD chamber, a CVD chamber, or an ALD chamber.
Alternatively, the processing chamber may be a thermal
annealing chamber, such as the RADIANCE® RTA chamber,
commercially available from Applied Materials, Inc., Santa
Clara, Calif. Substrate 200 may be heated to a temperature
within a range from about 25° C. to about 800° C., preferably,
from about 50° C. to about 400° C., and more preferably, from
about 100° C. to about 300° C. Substrate 200 may be heated
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for atime period within a range from about 2 minutes to about
20 minutes, preferably, from about 5 minutes to about 15
minutes. For example, substrate 200 may be heated to about
400° C. for about 12 minutes within the processing chamber.

In one example, substrate 200 and barrier layer 210 may be
exposed to hydrogen, ammonia, nitrogen, or mixtures thereof
while being heated within the processing chamber. In another
example, substrate 200 and barrier layer 210 may be exposed
to an ammonia/hydrogen mixture while being heated within
the processing chamber. In another example, substrate 200
and barrier layer 210 may be exposed to hydrogen, nitrogen,
silane, disilane, or mixtures thereof while being heated within
the processing chamber. In another example, substrate 200
and barrier layer 210 may be exposed to hydrogen, nitrogen,
argon, helium, or mixtures thereof while being heated within
the processing chamber.

In another embodiment, at least cobalt material or layer
may be deposited or formed on the substrate during step 130
of process 100. In one example, FI1G. 2C depicts cobalt layer
220 disposed on substrate 200, over barrier layer 210, and
conformally within aperture 206. Cobalt layer 220 is usually
a single layer, but may contain multiple layers. Cobalt layer
220 may be a continuous layer or a discontinuous layer across
barrier layer 210. Cobalt layer 220 may have a thickness of
about 40 A or less, such as within a range from about 2 A to
about 40 A, preferably, from about 5 A to about 30 A. Cobalt
layer 220 may be formed or deposited by a vapor deposition
process, such as CVD, PE-CVD, pulsed-CVD, ALD, PE-
ALD, or PVD. The plasma enhanced vapor deposition pro-
cess, namely PE-CVD and PE-ALD, may be an in situ plasma
process within the processing chamber or may be a remote
plasma process such that a plasma is ignited in by a RPS and
directed into the processing chamber. In many examples,
cobalt layer 220 contains metallic cobalt. Alternatively, in
other examples, cobalt layer 220 may contain one or more
cobalt materials, such as metallic cobalt, cobalt silicide,
cobalt boride, cobalt phosphide, alloys thereof, derivatives
thereof, or combinations thereof.

In some embodiments, cobalt layer 220 may be formed or
deposited by simultaneously introducing a cobalt precursor
and a reagent into the processing chamber during a thermal
CVD process, a pulsed-CVD process, a PE-CVD process, or
a pulsed PE-CVD process. In other embodiments, the cobalt
precursor may be introduced into the processing chamber
without a reagent during a thermal CVD process, a pulsed-
CVD process, a PE-CVD process, or a pulsed PE-CVD pro-
cess. Alternatively, in other embodiments, cobalt layer 220
may be formed or deposited by sequentially introducing a
cobalt precursor and a reagent into the processing chamber
during a thermal ALD process or a PE-ALD process.

Cobalt layer 220 may contain metallic cobalt in some
examples, but may contain other cobalt materials in other
examples. Suitable cobalt precursors for forming cobalt
materials (e.g., metallic cobalt or cobalt alloys) by CVD or
ALD processes described herein include cobalt carbonyl
complexes, cobalt amidinates compounds, cobaltocene com-
pounds, cobalt dienyl complexes, cobalt nitrosyl complexes,
derivatives thereof, complexes thereof, plasmas thereof, or
combinations thereof. In some embodiments, cobalt materi-
als may be deposited by CVD and ALD processes further
described in commonly assigned U.S. Pat. Nos. 7,264,846
and 7,404,985, which are herein incorporated by reference.

In some embodiments, cobalt carbonyl compounds or
complexes may be utilized as cobalt precursors. Cobalt car-
bonyl compounds or complexes have the general chemical
formula (CO),Co, L., where X may be 1,2,3,4,5,6,7,8,9,

vz
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4,5,6,7,or8. The group L is absent, one ligand or multiple
ligands, that may be the same ligand or different ligands, and
include cyclopentadienyl, alkylcyclopentadienyl (e.g., meth-
ylcyclopentadienyl or pentamethylcyclopentadienyl), penta-
dienyl, alkylpentadienyl, cyclobutadienyl, butadienyl, ethyl-
ene, allyl (or propylene), alkenes, dialkenes, alkynes,
acetylene, butylacetylene, nitrosyl, ammonia, derivatives
thereof, complexes thereof, plasmas thereof, or combinations
thereof.

In one embodiment, dicobalt hexacarbonyl acetyl com-
pounds may be used to form cobalt materials (e.g., cobalt
layer 220) during a deposition process. Dicobalt hexacarbo-
nyl acetyl compounds may have the chemical formula of
(CO)sCo,(RC=CR'"), wherein R and R' are independently
selected from hydrogen, methyl, ethyl, propyl, isopropyl,
butyl, tertbutyl, penta, benzyl, aryl, isomers thereof, deriva-
tives thereof, or combinations thereof. In one example, dico-
balt hexacarbonyl butylacetylene (CCTBA, (CO)Co,
(HC=C"Bu)) is the cobalt precursor. Other examples of
dicobalt hexacarbonyl acetyl compounds include dicobalt
hexacarbonyl methyl butylacetylene ((CO)4Co,
(MeC=C"Bu)), dicobalt hexacarbonyl phenylacetylene
((CO)Co,(HC=CPh)), hexacarbonyl methyl phenylacety-
lene ((CO)Co,(MeC=CPh)), dicobalt hexacarbonyl methy-
lacetylene ((CO)Co,(HC=CMe)), dicobalt hexacarbonyl
dimethylacetylene ((CO);Co,(MeC=CMe)), derivatives
thereof, complexes thereof, plasmas thereof, or combinations
thereof. Other exemplary cobalt carbonyl complexes include
cyclopentadienyl cobalt bis(carbonyl) (CpCo(CO),), tricar-
bonyl allyl cobalt ((CO);Co(CH,CH—CH,)), derivatives
thereof, complexes thereof, plasmas thereof, or combinations
thereof.

In another embodiment, cobalt amidinates or cobalt amido
complexes may be utilized as cobalt precursors. Cobalt amido
complexes have the general chemical formula (RR'N),Co,
where X may be 1, 2, or 3, and R and R' are independently
hydrogen, methyl, ethyl, propyl, butyl, alkyl, silyl, alkylsilyl,
derivatives thereof, or combinations thereof. Some exem-
plary cobalt amido complexes include bis(di(butyldimethyl-
silyl)amido) cobalt (((BuMe,Si),N),Co), bis(di(ethyldim-
ethylsilyl)amido) cobalt  (((EtMe,Si),N),Co),  bis(di
(propyldimethylsilyl)amido) cobalt (((PrMe,Si1),N),Co), bis
(di(trimethylsilyl)amido) cobalt (((Me;Si),N),Co), tris(di
(trimethylsilyl)amido) cobalt ((Me;Si),N);Co), derivatives
thereof, complexes thereof, plasmas thereof, or combinations
thereof.

Some exemplary cobalt precursors include methylcyclo-
pentadienyl cobalt bis(carbonyl) (MeCpCo(CO),), ethylcy-
clopentadienyl cobalt bis(carbonyl) (EtCpCo(CO),), pen-
tamethylcyclopentadienyl cobalt bis(carbonyl) (MesCpCo
(CO),), dicobalt octa(carbonyl) (Co,(CO)y), nitrosyl cobalt
tris(carbonyl) ((ON)Co(CO);), bis(cyclopentadienyl) cobalt,
(cyclopentadienyl) cobalt (cyclohexadienyl), cyclopentadi-
enyl cobalt (1,3-hexadienyl), (cyclobutadienyl) cobalt (cy-
clopentadienyl), bis(methylcyclopentadienyl) cobalt, (cyclo-
pentadienyl) cobalt  (5-methylcyclopentadienyl),  bis
(ethylene) cobalt (pentamethylcyclopentadienyl), cobalt
tetracarbonyl iodide, cobalt tetracarbonyl trichlorosilane,
carbonyl chloride tris(trimethylphosphine) cobalt, cobalt tri-
carbonyl-hydrotributylphosphine, acetylene dicobalt hexac-
arbonyl, acetylene dicobalt pentacarbonyl triethylphosphine,
derivatives thereof, complexes thereof, plasmas thereof, or
combinations thereof.

In some examples, alternative reagents, including reducing
agents, may be used to react with cobalt precursors while
forming cobalt materials (e.g., metallic cobalt or cobalt
alloys) by processes described herein include hydrogen (e.g.,
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H, or atomic-H), nitrogen (e.g., N, or atomic-N), ammonia
(NH,), hydrazine (N,H,), a hydrogen and ammonia mixture
(H,/NH;), borane (BH;), diborane (B,Hy), triethylborane
(Et;B), silane (SiH,), disilane (Si,Hy), trisilane (SisHy), tet-
rasilane (Si,H,,), methyl silane (SiCHg), dimethylsilane
(SiC,Hg), phosphine (PH;), derivatives thercof, plasmas
thereof, or combinations thereof.

In one embodiment, cobalt layer 220 containing metallic
cobalt is deposited by simultaneously exposing substrate 200
to a cobalt precursor gas and a reducing agent during a ther-
mal CVD process. In an alternative embodiment, cobalt layer
220 containing metallic cobalt is deposited by simultaneously
exposing substrate 200 to a cobalt precursor gas and a reduc-
ing agent gas during a plasma enhanced CVD process. The
plasma source may be an in situ plasma source within the
CVD chamber or a RPS positioned outside of the CVD cham-
ber. The cobalt precursor gas may be formed by passing a
carrier gas (e.g., nitrogen or argon) through an ampoule of a
cobalt precursor (e.g., CCTBA). The reducing agent gas may
be a single compound (e.g., H,), and therefore have no carrier
gas. Alternatively, the reducing agent gas may be formed by
passing a carrier gas through an ampoule of a reducing agent.

The ampoule may be heated depending on the cobalt pre-
cursor or reducing agent used during the process. In one
example, an ampoule containing a cobalt precursor, such as a
dicobalt hexacarbonyl acetyl compound or other cobalt car-
bonyl compound (e.g., (CO),Co,L,) may be heated to a tem-
perature within a range from about 30° C. to about 500° C.
The cobalt precursor gas usually has a flow rate within a range
from about 100 scem (standard cubic centimeters per minute)
to about 2,000 sccm, preferably, from about 200 sccm to
about 1,000 sccm, and more preferably, from about 300 sccm
to about 700 sccm, for example, about 500 sccm. The reduc-
ing agent gas usually has a flow rate within a range from about
0.5 slm (standard liters per minute) to about 10 slm, prefer-
ably, from about 1 slm to about 8 slm, and more preferably,
from about 2 slm to about 6 slm. In one example, reducing
agent gas is hydrogen and has a flow rate within a range from
about 2 slm to about 6 slm, such as about 4 slm.

The cobalt precursor gas and the reducing agent gas may be
combined to form a deposition gas prior to, while, or subse-
quent to entering the processing chamber during a deposition
process to deposit cobalt layer 220. Substrate 200 may be
positioned within a processing chamber and heated to a tem-
perature within a range from about 25° C. to about 800° C.,
preferably, from about 50° C. to about 400° C., and more
preferably, from about 100° C. to about 250° C., such as about
150° C. Once at a predetermined temperature, substrate 200
may be exposed to the deposition gas containing the cobalt
precursor gas and the reducing agent gas for a time period
within a range from about 0.1 seconds to about 120 seconds,
preferably, from about 1 second to about 60 seconds, and
more preferably, from about 5 seconds to about 30 seconds.
For example, substrate 200 may be heated to about 150° C. for
about 10 minutes within the processing chamber while form-
ing cobalt layer 220 during the CVD process.

At step 140, cobalt layer 220 may be optionally exposed to
a post-treatment process, such as a plasma process or a ther-
mal process. Process gases and/or reagents that may be
exposed to substrate 200 and cobalt layer 220 during plasma
or thermal post-treatment processes include hydrogen (e.g.,
H, or atomic-H), nitrogen (e.g., N, or atomic-N), ammonia
(NH,), a hydrogen and ammonia mixture (H,/NH,), hydra-
zine (N,H,), silane (SiH,), disilane (Si,H), helium, argon,
derivatives thereof, plasmas thereof, or combinations thereof.
The process gas may flow into the processing chamber or be
exposed to the substrate having a flow rate within a range
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from about 500 sccm to about 10 slm, preferably, from about
1 slm to about 6 slm, for example, about 3 slm.

In one embodiment, substrate 200 and cobalt layer 220 are
exposed to a plasma to remove contaminants from cobalt
layer 220 during the post-treatment process at step 140. Sub-
strate 200 may be positioned within a processing chamber
and exposed to a process gas which is ignited to form the
plasma. The process gas may contain one gaseous compound
or multiple gaseous compounds. Substrate 200 may be at
room temperature (e.g., 23° C.), but is usually preheated to
the desired temperature of the subsequent deposition process.
Substrate 200 may be heated to a temperature within a range
from about 100° C. to about 400° C., preferably, from about
125° C. to about 350° C., and more preferably, from about
150° C. to about 300° C., such as about 200° C. or about 250°
C.

The processing chamber may produce an in situ plasma or
be equipped with a RPS. In one embodiment, substrate 200
may be exposed to the plasma (e.g., in situ or remotely) for a
time period within a range from about 0.5 seconds to about 90
seconds, preferably, from about 10 seconds to about 60 sec-
onds, and more preferably, from about 20 seconds to about 40
seconds. The plasma may be produced at a power within a
range from about 100 watts to about 1,000 watts, preferably,
from about 200 watts to about 600 watts, and more preferably,
from about 300 watts to about 500 watts. The processing
chamber usually has an internal pressure of about 100 Torr or
less, such as within a range from about 0.1 Torr to about 100
Torr, preferably, from about 0.5 Torr to about 50 Torr, and
more preferably, from about 1 Torr to about 10 Torr.

In one example, substrate 200 and cobalt layer 220 may be
exposed to a plasma generated from hydrogen, ammonia,
nitrogen, or mixtures thereof. In another example, substrate
200 and cobalt layer 220 may be exposed to a plasma gener-
ated from hydrogen and ammonia. In another example, sub-
strate 200 and cobalt layer 220 may be exposed to a plasma
generated from hydrogen, nitrogen, silane, disilane, or mix-
tures thereof. In another example, substrate 200 and cobalt
layer 220 may be exposed to a plasma generated from hydro-
gen, nitrogen, argon, helium, or mixtures thereof.

In some examples, substrate 200 and cobalt layer 220 may
be exposed to a hydrogen plasma generated from hydrogen
gas ignited by a RPS. Cobalt layer 220 may be exposed to
hydrogen gas with a flow rate within a range from about 2 slm
to about 4 slm. The processing chamber may have an internal
pressure within a range from about 1 Torr to about 10 Torr,
and the plasma is ignited by a RPS having a power within a
range from about 300 watts to about 500 watts. In one
embodiment, the plasma may be exposed to cobalt layer 220
for a time period within a range from about 20 seconds to
about 40 seconds for every deposited layer of cobalt material
having a thickness within a range from about 7 A to about 10
A. Multiple treatments may be performed sequentially with
the multiple layers of deposited cobalt material while forming
cobalt layer 220.

In another embodiment, substrate 200 and cobalt layer 220
are exposed to a process gas to remove contaminants from
cobalt layer 220 during a thermal post-treatment process at
step 140. The thermal post-treatment process may bea RTP or
a RTA process. Substrate 200 may be positioned within a
processing chamber and exposed to at least one process gas
and/or reagent. The processing chamber may be a deposition
chamber that was used in a prior deposition process or will be
used for a subsequent deposition process, such as a PVD
chamber, a CVD chamber, or an ALD chamber. Alternatively,
the processing chamber may be a thermal annealing chamber,
such as the RADIANCE® RTA chamber, commercially
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available from Applied Materials, Inc., Santa Clara, Calif.
Substrate 200 may be heated to a temperature within a range
from about 25° C. to about 800° C., preferably, from about
50° C. to about 400° C., and more preferably, from about 100°
C. to about 300° C. Substrate 200 may be heated for a time
period within a range from about 2 minutes to about 20
minutes, preferably, from about 5 minutes to about 15 min-
utes. For example, substrate 200 may be heated to about 400°
C. for about 12 minutes within the processing chamber.

In one example, substrate 200 and cobalt layer 220 may be
exposed to hydrogen, ammonia, nitrogen, or mixtures thereof
while being heated within the processing chamber. In another
example, substrate 200 and cobalt layer 220 may be exposed
to an ammonia/hydrogen mixture while being heated within
the processing chamber. In another example, substrate 200
and cobalt layer 220 may be exposed to hydrogen, nitrogen,
silane, disilane, or mixtures thereof while being heated within
the processing chamber. In another example, substrate 200
and cobalt layer 220 may be exposed to hydrogen, nitrogen,
argon, helium, or mixtures thereof while being heated within
the processing chamber.

FIG. 2C depicts aperture 206 formed within dielectric layer
204 on substrate 200. Aperture 206 contains barrier layer 210
and cobalt layer 220 conformally disposed therein. In another
embodiment, during step 150 of process 100, a conductive
layer may be deposited or formed on or over cobalt layer 220.
In one embodiment, the conductive layer is bulk layer 240
which may be directly deposited over cobalt layer 220, as
depicted in FIG. 2D. Alternatively, in another embodiment,
the conductive layer is seed layer 230 and bulk layer 240.
Seed layer 230 may be deposited over cobalt layer 220 and
subsequently, bulk layer 240 may be deposited over seed
layer 230, as depicted in FIGS. 2E-2F.

Seed layer 230 and bulk layer 240 may be deposited or
formed during a single deposition process or multiple depo-
sition processes. Seed layer 230 may contain copper, tung-
sten, aluminum, ruthenium, cobalt, silver, platinum, palla-
dium, alloys thereof, derivatives thereof or combinations
thereof. Bulk layer 240 may contain copper, tungsten, alumi-
num, alloys thereof, derivatives thereof or combinations
thereof. Usually, seed layer 230 and bulk layer 240 may
independently contain copper, tungsten, aluminum, alloys
thereof, derivatives thereof or combinations thereof. Seed
layer 230 and bulk layer 240 may independently be deposited
by using one or more deposition process, such as a CVD
process, an ALD process, a PVD process, an electroless depo-
sition process, an ECP process, derivatives thereof, or com-
binations thereof.

In one example, each of seed layer 230 and bulk layer 240
contains copper or a copper alloy. For example, seed layer 230
containing copper may be formed on cobalt layer 220 by a
PVD process and thereafter, bulk layer 240 containing copper
may be deposited to fill aperture 206 by an ECP process or an
electroless deposition process. In another example, seed layer
230 containing copper may be formed on cobalt layer 220 by
an ALD process and thereafter, bulk layer 240 containing
copper may be deposited to fill aperture 206 by an ECP
process or an electroless deposition process. In another
example, seed layer 230 containing copper may be formed on
cobalt layer 220 by a CVD process and thereafter, bulk layer
240 containing copper may be deposited to fill aperture 206
by an ECP process or an electroless deposition process. In
another example, seed layer 230 containing copper may be
formed on cobalt layer 220 by an electroless process and
thereafter, bulk layer 240 containing copper may be deposited
to fill aperture 206 by an ECP process or an electroless depo-
sition process. In another example, cobalt layer 220 serves as
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aseed layer to which bulk layer 240 containing copper may be
directly deposited to fill aperture 206 by an ECP process or an
electroless deposition process.

In one example, each of seed layer 230 and bulk layer 240
contains tungsten or a tungsten alloy. For example, seed layer
230 containing tungsten may be formed on cobalt layer 220
by a PVD process and thereafter, bulk layer 240 containing
tungsten may be deposited to fill aperture 206 by a CVD
process or a pulsed-CVD process. In another example, seed
layer 230 containing tungsten may be formed on cobalt layer
220 by an ALD process and thereafter, bulk layer 240 con-
taining tungsten may be deposited to fill aperture 206 by a
CVD process or a pulsed-CVD process. In another example,
seed layer 230 containing tungsten may be formed on cobalt
layer 220 by a pulsed-CVD process and thereafter, bulk layer
240 containing tungsten may be deposited to fill aperture 206
by a CVD process or a pulsed-CVD process. In another
example, seed layer 230 containing tungsten may be formed
on cobalt layer 220 by an electroless process and thereafter,
bulk layer 240 containing tungsten may be deposited to fill
aperture 206 by a CVD process or a pulsed-CVD process. In
another example, cobalt layer 220 serves as a seed layer to
which bulk layer 240 containing tungsten may be directly
deposited to fill aperture 206 by a CVD process or a pulsed-
CVD process.

An ALD processing chamber used during embodiments
described herein is available from Applied Materials, Inc.,
located in Santa Clara, Calif. A detailed description of an
ALD processing chamber may be found in commonly
assigned U.S. Pat. Nos. 6,916,398 and 6,878,206, commonly
assigned U.S. Ser. No. 10/281,079, filed on Oct. 25,2002, and
published as U.S. Pub. No. 2003-0121608, and commonly
assigned U.S. Ser. Nos. 11/556,745,11/556,752, 11/556,756,
11/556,758, 11/556,763, each filed Nov. 6, 2006, and pub-
lished as U.S. Pub. Nos. 2007-0119379, 2007-0119371,
2007-0128862, 2007-0128863, and 2007-0128864, which
are hereby incorporated by reference in their entirety. In
another embodiment, a chamber configured to operate in both
an ALD mode as well as a conventional CVD mode may be
used to deposit cobalt-containing materials is described in
commonly assigned U.S. Pat. No. 7,204,886, which is incor-
porated herein by reference in its entirety. A detailed descrip-
tion of an ALD process for forming cobalt-containing mate-
rials is further disclosed in commonly assigned U.S. Pat. Nos.
7,264,846 and 7,404,985, which are hereby incorporated by
reference in their entirety. In other embodiments, a chamber
configured to operate in both an ALD mode as well as a
conventional CVD mode that may be used to deposit cobalt-
containing materials is the TXZ® showerhead and CVD
chamber available from Applied Materials, Inc., located in
Santa Clara, Calif. An example of a suitable vapor deposition
chamber includes the WXZ™ CVD chamber, commercially
available from Applied Materials, Inc., located in Santa Clara,
Calif. The vapor deposition chamber may be adapted to
deposit materials by conventional CVD, pulsed-CVD, or PE-
CVD techniques as well as by ALD and PE-ALD techniques.
Also, the vapor deposition chamber may be used as for treat-
ment processes, such as an in situ plasma process, a remote
plasma process, or a thermal annealing process.

“Substrate surface” or “substrate,” as used herein, refers to
any substrate or material surface formed on a substrate upon
which film processing is performed during a fabrication pro-
cess. For example, a substrate surface on which processing
may be performed include materials such as monocrystalline,
polycrystalline or amorphous silicon, strained silicon, silicon
on insulator (SOI), doped silicon, silicon germanium, germa-
nium, gallium arsenide, glass, sapphire, silicon oxide, silicon
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nitride, silicon oxynitride, and/or carbon doped silicon
oxides, such as SiO,C,, for example, BLACK DIAMOND®
low-k dielectric, available from Applied Materials, Inc.,
located in Santa Clara, Calif. Substrates may have various
dimensions, such as 100 mm, 200 mm, 300 mm, or 450 mm
diameter wafers, as well as, rectangular or square panes.
Unless otherwise noted, embodiments and examples
described herein are usually conducted on substrates with a
200 mm diameter or a 300 mm diameter, more preferably, a
300 mm diameter. Processes of the embodiments described
herein may be used to deposit cobalt materials (e.g., metallic
cobalt) on many substrates and surfaces, especially, barrier
layers and layers. Substrates on which embodiments of the
invention may be useful include, but are not limited to semi-
conductor wafers, such as crystalline silicon (e.g., Si<100>or
Si<111>), silicon oxide, strained silicon, silicon germanium,
doped or undoped polysilicon, doped or undoped silicon
wafers, and patterned or non-patterned wafers. Substrates
may be exposed to a pre-treatment process to polish, etch,
reduce, oxidize, hydroxylate, heat, and/or anneal the sub-
strate or substrate surface.

While the foregoing is directed to embodiments of the
invention, other and further embodiments of the invention
may be devised without departing from the basic scope
thereof, and the scope thereof is determined by the claims that
follow.

The invention claimed is:

1. A method for depositing materials on a substrate surface,
comprising:

forming a barrier layer on a substrate, wherein the barrier

layer is a tantalum nitride layer, a titanium nitride layer,
or combinations thereof and is deposited by a physical
vapor deposition process or a chemical vapor deposition
process;

exposing the substrate to dicobalt hexacarbonyl buty-

lacetylene (CCTBA) and hydrogen to form a cobalt
layer on the barrier layer during a thermal chemical
vapor deposition process, wherein the cobalt layer is
metallic cobalt, cobalt boride, cobalt phosphide, or com-
binations thereof, and

depositing a conductive material over the cobalt layer,

wherein the conductive material comprises copper or a
copper alloy.

2. The method of claim 1, further comprising exposing the
barrier layer or the cobalt layer to a plasma during a treatment
process, wherein the plasma is formed from nitrogen (N,),
ammonia (NH,), hydrogen (H,), or combinations thereof.

3. The method of claim 2, wherein the barrier layer or the
cobalt layer is exposed to a hydrogen plasma for a time period
within a range from about 20 seconds to about 40 seconds and
the hydrogen plasma is formed by a remote plasma source.

4. The method of claim 1, further comprising exposing the
barrier layer or the cobalt layer to a gas during a thermal
treatment process, wherein the gas is nitrogen (N, ), ammonia
(NH,), hydrogen (H,), or combinations thereof.

5. The method of claim 4, wherein the substrate is heated to
atemperature within a range from about 50 degrees Celsius to
about 400 degrees Celsius during the thermal treatment pro-
cess.

6. The method of claim 1, wherein the substrate is heated to
a temperature within a range from about 100 degrees Celsius
to about 250 degrees Celsius during the thermal chemical
vapor deposition process.

7. The method of claim 1, wherein the barrier layer is a
tantalum nitride layer disposed on a tantalum layer.

8. The method of claim 1, wherein the conductive material
comprises copper or a copper alloy.
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9. The method of claim 8, wherein the conductive material
comprises a seed layer and a bulk layer.

10. The method of claim 9, wherein the seed layer com-
prises copper and is deposited by a physical vapor deposition
process or a chemical vapor deposition process.

11. The method of claim 10, wherein the bulk layer com-
prises copper and is deposited by an electrochemical plating
process.

12. The method of claim 1, wherein the conductive mate-
rial is directly deposited on the cobalt layer by an electro-
chemical plating process.

13. A method for depositing materials on a substrate sur-
face, comprising:

forming a barrier layer on a substrate, wherein the barrier

layer is a tantalum nitride layer, a titanium nitride layer,
or combinations thereof and is deposited by a physical
vapor deposition process or a chemical vapor deposition
process;

exposing the substrate to dicobalt hexacarbonyl buty-

lacetylene (CCTBA) and hydrogen to form a cobalt
layer on the barrier layer during a thermal chemical
vapor deposition process;

exposing the cobalt layer to a plasma during a post-treat-

ment process; and

depositing a copper material on the cobalt layer by a vapor

deposition process, wherein the cobalt layer is metallic
cobalt, cobalt boride, cobalt phosphide, or combinations
thereof.

14. The method of claim 13, wherein the plasma is formed
from nitrogen (N,), ammonia (NH,;), hydrogen (H,), argon,
helium, or combinations thereof.

15. The method of claim 14, wherein the cobalt layer is
exposed to the plasma for a time period within a range from
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about 20 seconds to about 40 seconds, and the plasma is
formed by a remote plasma source.

16. The method of claim 13, wherein the substrate is heated
to a temperature within a range from about 100 degrees Cel-
sius to about 250 degrees Celsius during the thermal chemical
vapor deposition process.

17. The method of claim 13, wherein the barrier layer is a
tantalum nitride layer disposed on a tantalum layer.

18. The method of claim 13, wherein the copper material
comprises a seed layer and a bulk layer.

19. The method of claim 18, wherein the seed layer is
deposited by a physical vapor deposition process or a chemi-
cal vapor deposition process and the bulk layer is deposited
by an electrochemical plating process.

20. A method for depositing materials on a substrate sur-
face, comprising:

forming a barrier layer on a substrate, wherein the barrier

layer is a tantalum nitride layer, a titanium nitride layer,
or combinations thereof and is deposited by a physical
vapor deposition process or a chemical vapor deposition
process;

exposing the substrate to dicobalt hexacarbonyl buty-

lacetylene (CCTBA) and a reducing gas to form a cobalt
layer on the barrier layer during a vapor deposition pro-
cess;

exposing the cobalt layer to a hydrogen plasma during a

post-treatment process; and

depositing a copper material over the cobalt layer, wherein

the cobalt layer is metallic cobalt, cobalt boride, cobalt
phosphide, or combinations thereof.
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